Ju Y W, Luo Z W, Bi J, Liu C Z,LiuX*. Transfer of heavy metals from soil to tea and the potential human health risk in a regional high geochemical background area in southwest China. Science of the Total Environment, 2024, 908: 168122. (1区, IF=8)
HouL*, Liang Q B, Yang G Y, Gao L,Liu X*. Translocation of TiO2 nanoparticles enhances phosphorus uptake by wetland plants: Evidence fromPistia stratiotesandAlisma plantago-aquatica. Journal of Environmental Management, 2023, 345: 118789. (1区, IF=7)
Liu X, Han R, Cao Y, Turner B L, Ma L Q*. Enhancing phytate availability in soils and phytate-P acquisition by plants: a review.Environmental Science&Technology, 2022, 56, 9196– (1区, IF=11.36)
Liu X, Ju Y W, Ma L Q, Clemens S*, Rensing C*. Sporadic Pb accumulation by plants: Influence of soil biogeochemistry, microbial community and physiological mechanisms.Journal of Hazardous Materials, 2022, 444: 130391. (1区, IF=22)
ZhangH J, Wang Q, Xu Q J, Xu W M, Liu X*, Ma L Q*. Sequential fractionation and plant uptake of As, Cu, and Zn in a contaminated riparian wetland.Environmental Pollution, 2020, 268, 115734. (2区, IF=99)
XuW M, Liu X*, Ma L Q*. Closely-related species of hyperaccumulating plants and their ability in accumulation of As, Cd, Cu, Mn, Ni, Pb and Zn.Chemosphere, 2020, 126334. (2区, IF=11)
DengF La,Liu Xa, Ma L Q*. Aquaporins-mediated arsenite transport in plants: molecular mechanisms and applications in crop improvement.Critical Reviews in Environmental Science and Technology, 2019, 1–27. (1区, IF=98)
AbidR,Liu X*, Ma L Q*. Interactive effects of As, Cd and Zn on their uptake and oxidative stress in As-hyperaccumulatorPteris vittata.Environmental Pollution, 2019, 248: 756– (2区, IF=5.71)
GaoP, Liu Y, Wang Y,Liu X*, Wang Z*, Ma L Q. Spatial and temporal changes of P and Ca distribution and fractionation in soil and sediment in a karst farmland-wetland system.Chemosphere, 2019, 220: 644– (2区, IF=5.11)
Hadayat N, De Oliveira LM,Liu X*, Ma L Q*. Assessment of trace metals in five most-consumed vegetables in the US: conventional vs. organic. Environmental Pollution, 2018, 243: 292– (2区, IF=5.71)
da Silva E B, Lessl J T, Wilkie A C,Liu X*, Liu Y*, Ma L Q. Arsenic removal by As-hyperaccumulatorPteris vittatafrom two contaminated soils: A 5-year study.Chemosphere, 2018, 206: 736– (2区, IIF=5.11)
Moreira J D, da Silva E B, Fontes P F,LiuX*, Ma L Q*. Speciation, bioaccessibility and potential risk of chromium in Amazon forest soils.EnvironmentalPollution, 2018, 239: 384– (2区, IF=5.71)
LiuX, Feng H Y, Fu J W, Ma L Q. Phytate promoted arsenic uptake and growth in arsenic-hyperaccumulatorPteris vittata by upregulating phosphorus transporters.EnvironmentalPollution, 2018, 241: 240– (2区, IF=5.71)
LiuX, Feng H Y, Fu J W, Chen Y S, Liu Y*, Ma L Q*. Arsenic-induced nutrient uptake in As-hyperaccumulator Pteris vittata and their potential role to enhance plant growth.Chemosphere, 2018, 198: 425– (2区, IF=5.11)
LiuX, Fu J W, Tang N, Cao Y, Chen Y*, Ma L Q. Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulatorPteris vittata.EnvironmentalPollution, 2017, 226: 212–218. (2区, IF=1)
LiuX, Fu J W, Cao Y, Rathinasabapathi B, Chen Y*, Ma L Q. Microbial siderophores and root exudates enhanced goethite dissolution and Fe/As uptake by As-hyperaccumulatorPteris vittata.EnvironmentalPollution, 2017, 223: 230– (2区, IF=5.1)
LiuX, Fu J W, Chen Y*, Ma L Q*. Arsenic induced phytate exudation, and promoted FeAsO4 dissolution and plant growth in As-hyperaccumulatorPteris vittata.Environmental Science& Technology, 2016, 50(17): 9070– (1区, IF=6.2)
LiuX, Yang G, Guan D, Ghosh P, Ma L Q*. Catecholate-siderophore produced by As-resistant bacterium effectively dissolved FeAsO4 and promotedPteris vittataEnvironmentalPollution, 2015, 206: 376–381. (2区, IF=5.1)
曹兴圆, 毛佳璇, 马露冉, 杨晓莉,刘雪*. 有机酸活化植酸-矿物络合物的作用机制与影响因素综述. 生态与农村环境学报, 2024.DOI: 19741/j.issn.1673-4831.2023.0756
刘朝柱, 杨瑷瑄, 吴博贤, 剧永望,刘雪*. 砷超积累植物对低温胁迫的响应及耐寒性分析. 生态学杂志, 2024.DOI: 1148.Q.20230921.2053.008
徐其静, 毛佳璇, 马露冉, 杨晓莉,刘雪*. 钙磷对蜈蚣草淹水胁迫响应的调控效应. 生态学杂志, 2024.DOI: 10.13292/j.1000-4890.202405.010
李佳骏, 叶阜鑫, 刘朝柱,刘雪*. 砷对植物生长和生理生化特征的影响与机制综述. 生态毒理学报, 2024.(录用)
杨晓莉,毛佳璇, 马露冉, 徐其静,刘雪*. 纳米材料固定化植酸酶的制备及其催化效率与影响因素综述. 生态环境学报, 2024. (录用)
王翠婷, 张玉康, 徐其静,刘雪*.人工菌和野生菌中砷汞富集特征与吸收机制综述. 食品科学, 2024. (录用)
吴博贤, 艾雯妍, 文思颖, 杨晓莉,刘雪*. 土壤/沉积物中植酸对砷磷形态转化和生物有效性影响综述. 生态与农村环境学报, 2024, 40(4): 449–460.
剧永望, 毛佳璇, 马露冉, 杨晓莉,刘雪*. 秸秆生物炭吸附/钝化土壤重金属的过程机理与影响因素. 生态毒理学报, 2023, 18(5): 16–33.
曹兴圆, 艾雯妍, 文思颖, 杨晓莉,刘雪*. 有机酸提高土壤植酸生物有效性的作用机制、影响因素及应用. 植物营养与肥料学报, 2023, 21(11): 2150–2171.
刘朝柱, 艾雯妍, 文思颖, 剧永望,刘雪*. 水稻磷转运蛋白Pht1家族研究进展. 植物营养与肥料学报, 2023, 29(9): 1725–1737.
杨晓莉, 曹兴圆, 吴博贤, 徐其静,刘雪*. 土壤中微生物植酸酶的活性及其提高方法与应用. 微生物学通报, 2023, 50(6): 2687–2708.
苏奇倩, 丁豪杰, 李林, 李晓锋, 徐其静,刘雪*. 微生物植酸酶及其对土壤植酸的矿化作用综述. 环境化学, 2023, 42(4): 1366–1380.
罗增明, 剧永望, 张慧娟, 丁豪杰, 徐其静,刘雪*. 三七及种植土壤重金属污染特征与风险评价. 中国环境科学, 2022, 42(12): 5775–5784.
马晟, 杨晓莉, 刘朝柱, 徐其静,刘雪*. 石灰等含钙物质对土壤砷生物有效性及植物砷吸收的影响与机制. 中国环境科学, 2022, 42(12): 5785–5795.
赵宇, 文思颖, 李林, 徐其静,刘雪*. 微生物–植物联合修复镉砷污染农田土壤技术与应用. 生态毒理学报, 2022, 17(6): 144–162.
李林, 艾雯妍, 文思颖, 苏奇倩, 徐其静,刘雪*. 微生物吸附去除重金属效率与应用研究综述. 生态毒理学报, 2022, 17(4): 505–524.
徐其静, 罗增明, 李林, 赵宇, 马晟,刘雪*. 野生牛肝菌重金属的污染特征及风险评价研究进展. 生态毒理学报, 2022, 17(5): 272–291.
罗增明, 马晟, 李林, 赵宇, 徐其静,刘雪*. 土壤污染对中药材三七中重金属含量的影响. 生态毒理学报, 2022, 17(5): 292–306.
张慧娟, 苏奇倩, 丁豪杰, 李晓锋, 徐其静,刘雪*. 降低水稻籽粒镉砷含量的调控措施综述. 生态与农村环境学报, 2022, 38(7): 827–838.
李晓锋, 丁豪杰, 苏奇倩, 赵宇, 徐其静,刘雪*. 降低烟草吸收土壤镉的钝化技术及其机理研究进展. 环境工程技术学报, 2022, 12(03): 893–904.
李晓锋, 吴锋颖, 剧永望, 丁豪杰, 徐其静,刘雪*. 石灰、羟基磷灰石、秸秆生物炭对烟草吸收镉的影响. 生态毒理学报, 2022, 17(1): 381–394.
罗增明, 艾雯妍, 尹在晖,刘雪, 徐其静*. 野生鸡枞菌砷、铅和镉的含量与风险评价. 生态毒理学报, 2022, 17(5): 117–127.
丁豪杰, 苏奇倩, 李林, 李晓锋, 徐其静,刘雪*. 土壤农用地膜微生物降解研究进展. 中国环境科学, 2021, 41(09): 4231–4244.
高媛, 徐其静, 苏奇倩, 张慧娟,刘雪*. 典型野生食用菌重金属含量及其人体健康风险评价. 环境化学, 2021, 40(01): 223–231.
苏奇倩, 徐其静, 丁豪杰, 马晟, 李林,刘雪*. 微生物解磷特性及其铅污染土壤修复应用. 环境科学与技术, 2020, 43(12): 177–184.
张慧娟, 王齐, 高媛, 李晓锋, 徐其静,刘雪*. 水稻重金属积累分布与风险分析研究综述. 环境科学与技术, 2020, 8: 64–72.